Fibonacci sequence
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...
F20 = 6765
F50 = 12586269025
F100 = 354224848179261915075
F500 = 139423224561697880139724382870407283950070256587697307264108962948325571622863290691557658876222521294125
Naive Approach
Compute the n-th Fibonacci number.
Input: An integer n.
Output: n-th Fibonacci number.
Input format - An integer n.
Output format - Fn
Constraints - 0 ≤ n ≤ 45.
def fibonacci(n):
if n <= 1:
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
if __name__ == '__main__':
_ = int(input())
print(fibonacci(_))
The above algo works well for very small n. If we have n=100 it would take 56000 years to execute it at 1 GHz. Why it takes so much time because in recursion 1 value is calculated multiple times and hence it recomputes again and again.
Efficient Approach
So instead of stack we put loops and compute fibonacci numbers from scratch everytime.
create an array F [0 . . . n]
F [0] ← 0
F [1] ← 1
for i from 2 to n:
F [i] ← F [i − 1] + F [i − 2]
return F [n]
def fibonacci(n):
fib=[]
fib.append(0)
fib.append(1)
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib[n-1]
if __name__ == '__main__':
_ = int(input())
print(fibonacci(_))
The right algorithm makes all the difference.
Greatest Common Divisor
The greatest common divisor GCD(a,b) of two positive integers a and b is the largest integer d that divides both a and b. The solution of the Greatest Common Divisor Problem was first described (but not discovered!) by the Greek mathematician Euclid twenty three centuries ago.
Naive Approach
Compute the greatest common divisor of two positive integers.
Input: Two positive integers a and b.
Output: The greatest common divisor of a and b.
Input format - Integers a and b (separated by a space).
Output format - GCD(a,b)
Constraints - 1 ≤ a,b ≤ 2 · 109
def GCD(a, b):
best = 0
for i in range(1, a+b):
if a % i == 0 and b % i == 0:
best = i
return best
if __name__ == '__main__':
input_numbers = list(map(int, input().split()))
print(GCD(input_numbers[0], input_numbers[1]))
This approach runs approximately for a+b and its very slow for a 20 digit number.
Efficient Approach
Let a′ be the remainder when a is divided by b, then
gcd(a, b) = gcd(a′, b) = gcd(b, a′)
So algorithm becomes :
if b = 0:
return a
a′ ← the remainder when a is
divided by b
return EuclidGCD(b, a′)
gcd(3918848, 1653264)
= gcd(1653264, 612320)
= gcd(612320, 428624)
= gcd(428624, 183696)
= gcd(183696, 61232)
= gcd(61232, 0)
=61232
def GCD(a, b):
if b==0:
return a
c=a%b
return GCD(b,c)
if __name__ == '__main__':
input_numbers = list(map(int, input().split()))
print(GCD(input_numbers[0], input_numbers[1]))
Asymptotic Notation
Computing runtimes is hard, as it depends on fine details of program and details of computer. So we measure runtime in a way that ignores constant multiples.
\[logn < \sqrt{n} < n < nlogn < n^2 < 2^n\]Big O Notation
\(f(n) = O(g(n)) \text{(f is Big-O of g) or f<=g}\)
\(\text{if there exists constants N and c so that for all n>=N, f(n) <= c.g(n)}\)
3n2 + 5n + 2 has the same growth rate as n2
This has several advantages :
- Clarifies Growth rate
- Cleans up notation
- Can ignore complicated details
Common Rules :
- Multiplicative constants can be omitted
- na < nb for 0 < a < b
- na < nb (a > 0, b > 1)
- (logn)a < nb (a, b > 0)
- Smaller terms can be omitted
Calculating Big(O) :
Operation | Runtime |
---|---|
create an array F[0…n] | O(n) |
F[0] = 0 | O(1) |
F[1] = 1 | O(1) |
for i from 2 to n: | Loop O(n) times |
F[i] = F[i-1] + F[i-2] | O(n) as F[i] is very large number |
return F[n] | O(1) |
Total = O(n) + O(1) + O(1) + O(n).O(n) + O(1) = O(n2)
Plotting Graphs
Import modules :
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
Plotting = 7n2 + 6n + 5 for 1<=n<=100
n = np.linspace(1, 100)
plt.plot(n, 7 * n * n + 6 * n + 5)
plt.show()
Smaller terms can be omitted :
n = np.linspace(1, 100)
plt.plot(n, 7 * n * n + 6 * n + 5, label="7n^2+6n+5")
plt.plot(n, 7 * n * n, label="7n^2")
plt.legend(loc='upper left')
plt.show()
Out of two polynomials, the one with larger degree grows faster :
n = np.linspace(1, 10)
plt.plot(n, n, label="n")
plt.plot(n, n * n, label="n^2")
plt.plot(n, n * n * n, label="n^3")
plt.legend(loc='upper left')
plt.show()
Levels of Design
- Naive Algorithm: Definition to algorithm. Slow.
- Algorithm by way of standard Tools: Standard techniques.
- Optimized Algorithm: Improve existing algorithm.
- Magic Algorithm: Unique insight.
Programming Challenge #2
1. Fibonacci Numbers
Compute the n-th Fibonacci number.
Input: An integer n.
Output: n-th Fibonacci number.
Input format - An integer n.
Output format - Fn
Constraints - 0 ≤ n ≤ 45.
Example 1
3
2
Solution
def fibonacci(n):
fib=[]
fib.append(0)
fib.append(1)
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib[n-1]
if __name__ == '__main__':
_ = int(input())
print(fibonacci(_))
2. Last Digit of Fibonacci Numbers
Compute the last digit of the n-th Fibonacci number.
Input: An integer n.
Output: The last digit of the n-th Fibonacci number.
Input format - An integer n.
Output format - Fn
Constraints - 0 ≤ n ≤ 106.
Example 1
3
2
Solution
def fibonacci(n):
fib=[]
fib.append(0)
fib.append(1)
for i in range(2, n+1):
fib.append((fib[i-1] + fib[i-2])%10)
return fib[n]
if __name__ == '__main__':
_ = int(input())
if _ == 0:
print(0)
elif _ == 1:
print(1)
else:
print(fibonacci(_))
3. Greatest Common Divisor
Compute the greatest common divisor of two positive integers.
Input: Two positive integers a and b.
Output: The greatest common divisor of a and b.
Input format - Integers a and b (separated by a space).
Output format - GCD(a,b)
Constraints - 1 ≤ a,b ≤ 2 · 109
Example 1
28851538 1183019
17657
Solution
def GCD(a, b):
if b==0:
return a
c=a%b
return GCD(b,c)
if __name__ == '__main__':
input_numbers = list(map(int, input().split()))
print(GCD(input_numbers[0], input_numbers[1]))
4. Least Common Multiple
Compute the least common multiple of two positive integers.
Input: Two positive integers a and b.
Output: The least common multiple of a and b.
Input format - Integers a and b (separated by a space).
Output format - LCM(a,b)
Constraints - 1 ≤ a,b ≤ 2 · 107
Example 1
761457 614573
467970912861
Solution
def GCD(a, b):
if b==0:
return a
c=a%b
return GCD(b,c)
if __name__ == '__main__':
input_numbers = list(map(int, input().split()))
print((int)((input_numbers[0]*input_numbers[1])/GCD(input_numbers[0], input_numbers[1])))
5. Huge fibonacci number
Compute the n-th Fibonacci number modulo m.
Input: Two positive integers n and m.
Output: n-th Fibonacci number modulo m.
Input format - Integers n and m (separated by a space).
Output format - Fn mod m.
Constraints - 1 ≤ n ≤ 2 · 1014, 2 ≤ m ≤ 103
Example 1
2816213588 239
151
Solution
This problem can be solved using the properties of Pisano Period. For a given value of N and M >= 2, the series generated with Fi modulo M (for i in range(N)) is periodic.
The period always starts with 01. The Pisano Period is defined as the length of the period of this series. So to compute, say F2019 mod 5, we’ll find the remainder of 2019 when divided by 20 (Pisano Period of 5 is 20). 2019 mod 20 is 19. Therefore, F2019 mod 5 = F19 mod 5 = 1. This property is true in general.
# python3
n, m = [int(i) for i in input().split()]
if n<=1:
print(n)
quit()
pisano = {2: 3, 3: 8, 4: 6, 5: 20, 6: 24, 7: 16, 8: 12, 9: 24, 10: 60, 11: 10, 12: 24, 13: 28, 14: 48, 15: 40, 16: 24, 17: 36, 18: 24, 19: 18, 20: 60, 21: 16, 22: 30, 23: 48, 24: 24, 25: 100, 26: 84, 27: 72, 28: 48, 29: 14, 30: 120, 31: 30, 32: 48, 33: 40, 34: 36, 35: 80, 36: 24, 37: 76, 38: 18, 39: 56, 40: 60, 41: 40, 42: 48, 43: 88, 44: 30, 45: 120, 46: 48, 47: 32, 48: 24, 49: 112, 50: 300, 51: 72, 52: 84, 53: 108, 54: 72, 55: 20, 56: 48, 57: 72, 58: 42, 59: 58, 60: 120, 61: 60, 62: 30, 63: 48, 64: 96, 65: 140, 66: 120, 67: 136, 68: 36, 69: 48, 70: 240, 71: 70, 72: 24, 73: 148, 74: 228, 75: 200, 76: 18, 77: 80, 78: 168, 79: 78, 80: 120, 81: 216, 82: 120, 83: 168, 84: 48, 85: 180, 86: 264, 87: 56, 88: 60, 89: 44, 90: 120, 91: 112, 92: 48, 93: 120, 94: 96, 95: 180, 96: 48, 97: 196, 98: 336, 99: 120, 100: 300, 101: 50, 102: 72, 103: 208, 104: 84, 105: 80, 106: 108, 107: 72, 108: 72, 109: 108, 110: 60, 111: 152, 112:
48, 113: 76, 114: 72, 115: 240, 116: 42, 117: 168, 118: 174, 119: 144, 120: 120, 121: 110, 122: 60, 123: 40, 124: 30, 125: 500, 126: 48, 127: 256, 128: 192, 129: 88, 130: 420, 131: 130, 132: 120, 133: 144, 134: 408, 135: 360, 136: 36, 137: 276, 138: 48, 139: 46, 140: 240, 141: 32, 142: 210, 143: 140, 144: 24, 145: 140, 146: 444, 147: 112, 148: 228, 149: 148, 150: 600, 151: 50, 152: 36, 153: 72, 154: 240, 155: 60, 156: 168, 157: 316, 158: 78, 159: 216, 160: 240, 161: 48, 162: 216, 163: 328, 164: 120, 165: 40, 166: 168, 167: 336, 168: 48, 169: 364, 170: 180, 171: 72, 172: 264, 173: 348, 174: 168, 175: 400, 176: 120, 177: 232, 178: 132, 179: 178, 180: 120, 181: 90, 182: 336, 183: 120, 184: 48, 185: 380, 186: 120, 187: 180, 188: 96, 189: 144, 190: 180, 191: 190, 192: 96, 193: 388, 194: 588, 195: 280, 196: 336, 197: 396, 198: 120, 199: 22, 200: 300, 201: 136, 202: 150, 203: 112, 204: 72, 205: 40, 206: 624, 207:
48, 208: 168, 209: 90, 210: 240, 211: 42, 212: 108, 213: 280, 214: 72, 215: 440, 216: 72, 217: 240, 218: 108, 219: 296, 220: 60, 221: 252, 222: 456, 223: 448, 224: 48, 225: 600, 226: 228, 227: 456, 228: 72, 229: 114, 230: 240, 231: 80, 232: 84, 233: 52, 234: 168, 235: 160, 236: 174, 237: 312, 238: 144, 239: 238, 240: 120, 241: 240, 242: 330, 243: 648, 244: 60, 245:
560, 246: 120, 247: 252, 248: 60, 249: 168, 250: 1500, 251: 250, 252: 48, 253: 240, 254: 768, 255: 360, 256: 384, 257: 516, 258: 264, 259: 304, 260: 420, 261: 168, 262: 390, 263: 176,
264: 120, 265: 540, 266: 144, 267: 88, 268: 408, 269: 268, 270: 360, 271: 270, 272: 72, 273: 112, 274: 276, 275: 100, 276: 48, 277: 556, 278: 138, 279: 120, 280: 240, 281: 56, 282: 96, 283: 568, 284: 210, 285: 360, 286: 420, 287: 80, 288: 48, 289: 612, 290: 420, 291: 392, 292: 444, 293: 588, 294: 336, 295: 580, 296: 228, 297: 360, 298: 444, 299: 336, 300: 600, 301:
176, 302: 150, 303: 200, 304: 72, 305: 60, 306: 72, 307: 88, 308: 240, 309: 208, 310: 60, 311: 310, 312: 168, 313: 628, 314: 948, 315: 240, 316: 78, 317: 636, 318: 216, 319: 70, 320: 480, 321: 72, 322: 48, 323: 36, 324: 216, 325: 700, 326: 984, 327: 216, 328: 120, 329: 32, 330: 120, 331: 110, 332: 168, 333: 456, 334: 336, 335: 680, 336: 48, 337: 676, 338: 1092, 339: 152, 340: 180, 341: 30, 342: 72, 343: 784, 344: 264, 345: 240, 346: 348, 347: 232, 348: 168, 349: 174, 350: 1200, 351: 504, 352: 240, 353: 236, 354: 696, 355: 140, 356: 132, 357: 144, 358: 534, 359: 358, 360: 120, 361: 342, 362: 90, 363: 440, 364: 336, 365: 740, 366: 120, 367: 736, 368: 48, 369: 120, 370: 1140, 371: 432, 372: 120, 373: 748, 374: 180, 375: 1000, 376: 96, 377: 28, 378: 144, 379: 378, 380: 180, 381: 256, 382: 570, 383: 768, 384: 192, 385: 80, 386: 1164, 387: 264, 388: 588, 389: 388, 390: 840, 391: 144, 392: 336, 393: 520, 394: 396, 395: 780, 396: 120, 397: 796, 398: 66, 399: 144, 400: 600, 401: 200, 402: 408, 403: 420, 404: 150, 405: 1080, 406: 336, 407: 380, 408: 72, 409: 408, 410: 120, 411: 552, 412: 624, 413: 464, 414: 48, 415: 840, 416: 336, 417: 184, 418: 90, 419: 418, 420: 240, 421: 84, 422: 42, 423: 96, 424: 108, 425: 900, 426: 840, 427: 240, 428: 72, 429: 280, 430: 1320, 431: 430, 432: 72, 433: 868, 434: 240, 435: 280, 436: 108, 437: 144, 438: 888, 439: 438, 440: 60, 441: 336, 442: 252, 443: 888, 444: 456, 445: 220, 446: 1344, 447: 296, 448: 96, 449: 448, 450: 600, 451: 40, 452: 228, 453: 200, 454: 456, 455: 560, 456: 72, 457: 916, 458: 114, 459: 72, 460: 240, 461: 46, 462: 240, 463: 928, 464: 168, 465: 120, 466: 156, 467: 936, 468: 168, 469: 272, 470: 480, 471: 632, 472: 348, 473: 440, 474: 312, 475: 900, 476: 144, 477: 216, 478: 714, 479: 478, 480: 240, 481: 532, 482: 240, 483: 48, 484: 330, 485: 980, 486: 648, 487: 976, 488: 60, 489: 328, 490: 1680, 491: 490, 492: 120, 493: 252, 494: 252, 495: 120, 496: 120, 497: 560, 498: 168, 499: 498, 500: 1500, 501: 336, 502: 750, 503: 1008, 504: 48, 505: 100, 506:
240, 507: 728, 508: 768, 509: 254, 510: 360, 511: 592, 512: 768, 513: 72, 514: 516, 515: 1040, 516: 264, 517: 160, 518: 912, 519: 696, 520: 420, 521: 26, 522: 168, 523: 1048, 524: 390, 525: 400, 526: 528, 527: 180, 528: 120, 529: 1104, 530: 540, 531: 696, 532: 144, 533: 280, 534: 264, 535: 360, 536: 408, 537: 712, 538: 804, 539: 560, 540: 360, 541: 90, 542: 270, 543: 360, 544: 144, 545: 540, 546: 336, 547: 1096, 548: 276, 549: 120, 550: 300, 551: 126, 552: 48, 553: 624, 554: 1668, 555: 760, 556: 138, 557: 124, 558: 120, 559: 616, 560: 240, 561: 360, 562: 168, 563: 376, 564: 96, 565: 380, 566: 1704, 567: 432, 568: 420, 569: 568, 570: 360, 571: 570, 572: 420, 573: 760, 574: 240, 575: 1200, 576: 96, 577: 1156, 578: 612, 579: 776, 580: 420, 581: 336, 582: 1176, 583: 540, 584: 444, 585: 840, 586: 588, 587: 1176, 588: 336, 589: 90, 590: 1740, 591: 792, 592: 456, 593: 1188, 594: 360, 595: 720, 596: 444, 597: 88, 598: 336, 599: 598, 600: 600, 601: 600, 602: 528, 603: 408, 604: 150, 605: 220, 606: 600, 607: 1216, 608: 144, 609: 112, 610: 60, 611: 224, 612: 72, 613: 1228, 614: 264, 615: 40, 616: 240, 617: 1236, 618: 624, 619: 206, 620: 60, 621: 144, 622: 930, 623: 176, 624: 168, 625: None, 626: 1884, 627: 360, 628: 948, 629: 684, 630: 240, 631: 630, 632: 156, 633: 168, 634: 636, 635: 1280, 636: 216, 637: 112, 638: 210, 639: 840, 640: 960, 641: 640, 642: 72, 643: 1288, 644: 48, 645: 440, 646: 36, 647: 1296, 648: 216, 649: 290, 650: None, 651: 240, 652: 984, 653: 1308, 654: 216, 655: 260, 656: 120, 657: 888, 658: 96, 659: 658, 660: 120, 661: 220, 662: 330, 663: 504, 664: 168, 665: 720, 666: 456, 667: 336, 668: 336, 669: 448, 670: None, 671: 60, 672: 48, 673: 1348, 674: None, 675: 1800, 676: 1092, 677: 452, 678: 456, 679: 784, 680: 180, 681: 456, 682: 30, 683: 1368, 684: 72, 685: 1380, 686: None, 687: 456, 688: 264, 689:
756, 690: 240, 691: 138, 692: 348, 693: 240, 694: 696, 695: 460, 696: 168, 697: 360, 698: 174, 699: 104, 700: 1200, 701: 700, 702: 504, 703: 684, 704: 480, 705: 160, 706: 708, 707: 400, 708: 696, 709: 118, 710: 420, 711: 312, 712: 132, 713: 240, 714: 144, 715: 140, 716: 534, 717: 952, 718: 1074, 719: 718, 720: 120, 721: 208, 722: 342, 723: 240, 724: 90, 725: 700, 726: 1320, 727: 1456, 728: 336, 729: 1944, 730: None, 731: 792, 732: 120, 733: 1468, 734: None, 735: 560, 736: 48, 737: 680, 738: 120, 739: 738, 740: 1140, 741: 504, 742: 432, 743: 496,
744: 120, 745: 740, 746: None, 747: 168, 748: 180, 749: 144, 750: None, 751: 750, 752: 96, 753: 1000, 754: 84, 755: 100, 756: 144, 757: 1516, 758: 378, 759: 240, 760: 180, 761: 380, 762: 768, 763: 432, 764: 570, 765: 360, 766: 768, 767: 812, 768: 384, 769: 192, 770: 240, 771: 1032, 772: 1164, 773: 1548, 774: 264, 775: 300, 776: 588, 777: 304, 778: 1164, 779: 360, 780: 840, 781: 70, 782: 144, 783: 504, 784: 336, 785: 1580, 786: 1560, 787: 1576, 788: 396, 789: 176, 790: 780, 791: 304, 792: 120, 793: 420, 794: None, 795: 1080, 796: 66, 797: 228, 798: 144, 799: 288, 800: 1200, 801: 264, 802: 600, 803: 740, 804: 408, 805: 240, 806: 420, 807: 536, 808: 300, 809: 202, 810: 1080, 811: 270, 812: 336, 813: 1080, 814: 1140, 815: 1640, 816: 72, 817: 792, 818: 408, 819: 336, 820: 120, 821: 820, 822: 552, 823: 1648, 824: 624, 825: 200, 826: 1392, 827: 1656, 828: 48, 829: 276, 830: 840, 831: 1112, 832: 672, 833: 1008, 834: 552, 835: 1680, 836: 90, 837: 360, 838: 1254, 839: 838, 840: 240, 841: 406, 842: 84, 843: 56, 844: 42, 845: 1820, 846: 96, 847: 880, 848: 216, 849: 568, 850: 900, 851: 912, 852: 840, 853: 1708, 854: 240, 855: 360, 856: 72, 857: 1716, 858: 840, 859: 78, 860: 1320, 861: 80, 862: 1290, 863: 1728, 864: 144, 865: 1740, 866: None, 867: 1224, 868: 240, 869: 390, 870: 840, 871: 952, 872: 108, 873: 1176, 874: 144, 875: None, 876: 888, 877: 1756, 878: 438, 879: 1176, 880: 120, 881: 176, 882: 336, 883: 1768, 884: 252, 885: 1160, 886: 888, 887: 1776, 888:
456, 889: 256, 890: 660, 891: 1080, 892: 1344, 893: 288, 894: 888, 895: 1780, 896: 192, 897: 336, 898: 1344, 899: 210, 900: 600, 901: 108, 902: 120, 903: 176, 904: 228, 905: 180, 906:
600, 907: 1816, 908: 456, 909: 600, 910: 1680, 911: 70, 912: 72, 913: 840, 914: None, 915: 120, 916: 114, 917: 1040, 918: 72, 919: 102, 920: 240, 921: 88, 922: 138, 923: 140, 924: 240, 925: 1900, 926: None, 927: 624, 928: 336, 929: 928, 930: 120, 931: 1008, 932: 156, 933: 1240, 934: 936, 935: 180, 936: 168, 937: 1876, 938: 816, 939: 1256, 940: 480, 941: 470, 942: 1896, 943: 240, 944: 696, 945: 720, 946: 1320, 947: 1896, 948: 312, 949: 1036, 950: 900, 951: 1272, 952: 144, 953: 212, 954: 216, 955: 380, 956: 714, 957: 280, 958: 1434, 959: 1104, 960: 480, 961: 930, 962: 1596, 963: 72, 964: 240, 965: 1940, 966: 48, 967: 176, 968: 660, 969: 72, 970: None, 971: 970, 972: 648, 973: 368, 974: None, 975: 1400, 976: 120, 977: 652, 978: 984, 979: 220, 980: 1680, 981: 216, 982: 1470, 983: 1968, 984: 120, 985: 1980, 986: 252, 987: 32, 988: 252, 989: 528, 990: 120, 991: 198, 992: 240, 993: 440, 994: 1680, 995: 220, 996: 168, 997: 1996, 998: 498, 999: 1368, 1000: 1500}
lesser = n%pisano[m]
if lesser<=1:
print(lesser)
quit()
def fibo(n, m):
lesser = n%pisano[m]
a, b = 0, 1
for _ in range(2,lesser+1):
c = a + b
b, a = c, b
print(c%m)
fibo(lesser, m)
6. Last Digit of the Sum of Fibonacci Numbers
Compute the last digit of F0 + F1 + · · · + Fn.
Input: An integer n.
Output: The last digit of F0 + F1 + · · · + Fn.
Input format - An integer n.
Output format - (F0 + F1 + · · · + Fn)mod10.
Constraints - 0 ≤ n ≤ 1014
Example 1
100
5
Solution
The idea is to notice that the last digits of fibonacci numbers also occur in sequences of length 60 (from the previous problem: since pisano peiod of 10 is 60). Irrespective of how large n is, its last digit is going to have appeared somewhere within the sequence. Two Things apart from edge case of 10 as last digit.
Sum of nth Fibonacci series = F(n+2) -1
Then pisano period of module 10 = let n+2 mod (60) = m then find F(m) mod(10)-1
n = int(input())
if n<=1:
print(n)
quit()
lesser = (n+2)%60
if lesser==1:
print(0)
quit()
elif lesser==0:
print(9)
quit()
def fibo(n):
a,b = 0, 1
for _ in range(2,lesser+1):
c = a+b
c = c%10
b, a = c, b
if c!=0:
print(c-1)
else:
print(9)
fibo(lesser)
7. Last Digit of the Sum of Fibonacci Numbers Again
Given two non-negative integers 𝑚 and 𝑛, where 𝑚 ≤ 𝑛, find the last digit of the sum Fm + Fm+1 + · · · + Fn.
Input: The input consists of two non-negative integers 𝑚 and 𝑛 separated by a space.
Output: The last digit of Fm + Fm+1 + · · · + Fn.
Example 1
10 200
2
Solution
Call the previous function twice, once for n and again for m. Subtract both values.
m, n = [int(i) for i in input().split()]
if n<=1:
print(n)
quit()
lesser_n = (n+2)%60
lesser_m = (m+1)%60
def fibo(n):
a,b = 0, 1
for i in range(2,n+1):
c = a+b
c = c%10
b, a = c, b
return (c-1)
if lesser_n<=1:
a = lesser_n-1
else:
a = fibo(lesser_n)
if lesser_m<=1:
b = lesser_m-1
else:
b = fibo(lesser_m)
if a>=b:
print(a-b)
else:
print(10+a-b)
8. Last Digit of the Sum of Squares of Fibonacci Numbers
Compute the last digit of F02 + F12 + · · · + Fn2.
Input: The input n.
Output: The last digit of F02 + F12 + · · · + Fn2.
Example 1
1234567890
0
Solution
There is a theoram :
\[F_1^2 + F_1^2+...+F_1^2 = F_nF_{n+1}\]n = int(input())
lesser_n = n%60
lesser_nplus = (n+1)%60
def fibo(n):
a, b = 0, 1
for _ in range(2, n+1):
c = a+b
c = c% 10
b, a = c, b
return c
if lesser_n<=1:
a = lesser_n
else:
a = fibo(lesser_n)
if lesser_nplus<=1:
b = lesser_nplus
else:
b = fibo(lesser_nplus)
print((a*b)%10)